Please use this identifier to cite or link to this item: https://cris.library.msu.ac.zw//handle/11408/4426
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMudereri, Bester Tawona-
dc.contributor.authorChitata, Tavengwa-
dc.contributor.authorMukanga, Concilia-
dc.contributor.authorMupfiga, Elvis Tawanda-
dc.contributor.authorGwatirisa, Calisto-
dc.contributor.authorDube, Timothy-
dc.date.accessioned2021-06-09T12:32:06Z-
dc.date.available2021-06-09T12:32:06Z-
dc.date.issued2019-
dc.identifier.issn1010-6049-
dc.identifier.urihttps://www.tandfonline.com/doi/abs/10.1080/10106049.2019.1695956-
dc.identifier.urihttp://hdl.handle.net/11408/4426-
dc.description.abstractWe explore the potential contribution of Sentinel-2 (S2) wavebands and biophysical parameters, i.e. Leaf Area Index (LAI), Chlorophyll content (Cab), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fraction of Vegetation Cover (FVC) and Canopy Water Content (CWC) in mapping land use and land cover (LULC) in Zimbabwe. Random forest (RF) and naïve Bayes (NB) were used to classify S2 imagery. S2 biophysical variables resulted in LULC overall accuracy (OA) of 96% and 86% for RF and NB respectively, whereas S2 wavebands produced slightly higher accuracies of 97% and 88% for RF and NB respectively. Combining wavebands and biophysical variables enhanced classification results (OA = 98%: RF and 91%: NB). Variable importance analysis showed that FAPAR, red-edge 2, green, red-edge 3, FVC and band 8a, are the most relevant in the classification. Our work shows the strength and capability of biophysical variables in discerning different LULC attributes in semi-arid environments.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofseriesGeocarto International;-
dc.subjectBayesianen_US
dc.subjectFAPARen_US
dc.subjectLAIen_US
dc.subjectnaïve Bayesen_US
dc.subjectrandom foresten_US
dc.subjectSNAP®en_US
dc.subjectrural Zimbabween_US
dc.titleCan biophysical parameters derived from Sentinel-2 space-borne sensor improve land cover characterisation in semi-arid regions?en_US
dc.typeArticleen_US
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
Appears in Collections:Research Papers
Files in This Item:
File Description SizeFormat 
mudereri.pdfAbstract4.9 kBAdobe PDFView/Open
Show simple item record

Page view(s)

78
checked on Nov 29, 2024

Download(s)

16
checked on Nov 29, 2024

Google ScholarTM

Check


Items in MSUIR are protected by copyright, with all rights reserved, unless otherwise indicated.